SECTION 1. IDENTIFICATION

Product name: Abamectin / Levamisole Hydrochloride / Cobalt EDTA / Sodium Selenate Formulation
Other means of identification: No data available

Manufacturer or supplier's details
Company name of supplier: Merck & Co., Inc
Address: 126 E. Lincoln Avenue
Rahway, New Jersey U.S.A. 07065
Telephone: 908-740-4000
Emergency telephone: 1-908-423-6000
E-mail address: EHSDATASTEWARD@merck.com

Recommended use of the chemical and restrictions on use
Recommended use: Veterinary product
Restrictions on use: Not applicable

SECTION 2. HAZARDS IDENTIFICATION

GHS classification in accordance with the Hazardous Products Regulations
Acute toxicity (Oral): Category 4
Respiratory sensitization: Sub-category 1B
Germ cell mutagenicity: Category 2
Carcinogenicity: Category 2
Reproductive toxicity: Category 2
Specific target organ toxicity - repeated exposure: Category 1 (Respiratory Tract, Thyroid, Heart, Blood)
Specific target organ toxicity - repeated exposure (Oral): Category 2 (Blood, Testis)

GHS label elements
Hazard pictograms:
Signal Word: Danger
Hazard Statements: H302 Harmful if swallowed.
H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled.
H341 Suspected of causing genetic defects.
H351 Suspected of causing cancer.
H361fd Suspected of damaging fertility. Suspected of damaging the unborn child.
H372 Causes damage to organs (Respiratory Tract, Thyroid, Heart, Blood) through prolonged or repeated exposure.
H373 May cause damage to organs (Blood, Testis) through prolonged or repeated exposure if swallowed.

Precautionary Statements:

Prevention:
P201 Obtain special instructions before use.
P202 Do not handle until all safety precautions have been read and understood.
P260 Do not breathe mist or vapors.
P264 Wash skin thoroughly after handling.
P270 Do not eat, drink or smoke when using this product.
P280 Wear protective gloves, protective clothing, eye protection and face protection.
P284 Wear respiratory protection.

Response:
P301 + P312 + P330 IF SWALLOWED: Call a doctor if you feel unwell. Rinse mouth.
P304 + P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing.
P308 + P313 IF exposed or concerned: Get medical attention.
P342 + P311 If experiencing respiratory symptoms: Call a doctor.

Storage:
P405 Store locked up.

Disposal:
P501 Dispose of contents and container to an approved waste disposal plant.

Other hazards
None known.

SECTION 3. COMPOSITION/INFORMATION ON INGREDIENTS

Substance / Mixture: Mixture

Components

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>Common Name/Synonym</th>
<th>CAS-No.</th>
<th>Concentration (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levamisole hydrochloride</td>
<td>No data available</td>
<td>16595-80-5</td>
<td>8.8</td>
</tr>
<tr>
<td>Cobalt disodium ethylenediaminetetraacetate</td>
<td>No data available</td>
<td>15137-09-4</td>
<td>4.55</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>Benzenemethanol</td>
<td>100-51-6</td>
<td>2</td>
</tr>
</tbody>
</table>
SECTION 4. FIRST AID MEASURES

General advice: In the case of accident or if you feel unwell, seek medical advice immediately. When symptoms persist or in all cases of doubt seek medical advice.

If inhaled: If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

In case of skin contact: In case of contact, immediately flush skin with soap and plenty of water. Remove contaminated clothing and shoes. Get medical attention. Wash clothing before reuse. Thoroughly clean shoes before reuse.

In case of eye contact: Flush eyes with water as a precaution. Get medical attention if irritation develops and persists.

If swallowed: If swallowed, DO NOT induce vomiting. Get medical attention. Rinse mouth thoroughly with water. Never give anything by mouth to an unconscious person.

Most important symptoms and effects, both acute and delayed: Harmful if swallowed. May cause allergy or asthma symptoms or breathing difficulties if inhaled. Suspected of causing genetic defects. Suspected of causing cancer. Suspected of damaging fertility. Suspected of damaging the unborn child. Causes damage to organs through prolonged or repeated exposure. Excessive exposure may aggravate preexisting asthma and other respiratory disorders (e.g. emphysema, bronchitis, reactive airways dysfunction syndrome).

Protection of first-aiders: First Aid responders should pay attention to self-protection, and use the recommended personal protective equipment when the potential for exposure exists (see section 8).

Notes to physician: Treat symptomatically and supportively.
SECTION 5. FIRE-FIGHTING MEASURES

Suitable extinguishing media: Water spray
Alcohol-resistant foam
Carbon dioxide (CO2)
Dry chemical

Unsuitable extinguishing media: None known.

Specific hazards during firefighting: Exposure to combustion products may be a hazard to health.

Hazardous combustion products:
- Carbon oxides
- Oxides of phosphorus
- Cobalt compounds
- Nitrogen oxides (NOx)
- Metal oxides

Specific extinguishing methods:
- Use extinguishing measures that are appropriate to local circumstances and the surrounding environment.
- Use water spray to cool unopened containers.
- Remove undamaged containers from fire area if it is safe to do so.
- Evacuate area.

Special protective equipment for fire-fighters:
- In the event of fire, wear self-contained breathing apparatus.
- Use personal protective equipment.

SECTION 6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures:
- Use personal protective equipment.
- Follow safe handling advice (see section 7) and personal protective equipment recommendations (see section 8).

Environmental precautions:
- Avoid release to the environment.
- Prevent further leakage or spillage if safe to do so.
- Prevent spreading over a wide area (e.g., by containment or oil barriers).
- Retain and dispose of contaminated wash water.
- Local authorities should be advised if significant spillages cannot be contained.

Methods and materials for containment and cleaning up:
- Soak up with inert absorbent material.
- For large spills, provide diking or other appropriate containment to keep material from spreading. If diked material can be pumped, store recovered material in appropriate container.
- Clean up remaining materials from spill with suitable absorbent.
- Local or national regulations may apply to releases and disposal of this material, as well as those materials and items employed in the cleanup of releases. You will need to determine which regulations are applicable.
- Sections 13 and 15 of this SDS provide information regarding certain local or national requirements.
SECTION 7. HANDLING AND STORAGE

Technical measures
- See Engineering measures under EXPOSURE CONTROLS/PERSONAL PROTECTION section.

Local/Total ventilation
- Use only with adequate ventilation.

Advice on safe handling
- Do not breathe mist or vapors.
- Do not swallow.
- Avoid contact with eyes.
- Avoid prolonged or repeated contact with skin.
- Wash skin thoroughly after handling.
- Handle in accordance with good industrial hygiene and safety practice, based on the results of the workplace exposure assessment.
- Keep container tightly closed.
- Already sensitized individuals, and those susceptible to asthma, allergies, chronic or recurrent respiratory disease, should consult their physician regarding working with respiratory irritants or sensitizers.
- Do not eat, drink or smoke when using this product.
- Take care to prevent spills, waste and minimize release to the environment.

Conditions for safe storage
- Keep in properly labeled containers.
- Store locked up.
- Keep tightly closed.
- Store in accordance with the particular national regulations.

Materials to avoid
- Do not store with the following product types:
 - Strong oxidizing agents
 - Self-reactive substances and mixtures
 - Organic peroxides
 - Explosives
 - Gases

SECTION 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Ingredients with workplace control parameters

<table>
<thead>
<tr>
<th>Components</th>
<th>CAS-No.</th>
<th>Value type (Form of exposure)</th>
<th>Control parameters / Permissible concentration</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levamisole hydrochloride</td>
<td>16595-80-5</td>
<td>TWA</td>
<td>20 µg/m³ (OEB 3)</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wipe limit 200 µg/100 cm²</td>
<td>Internal</td>
</tr>
<tr>
<td>Sodium selenate</td>
<td>13410-01-0</td>
<td>TWA</td>
<td>20 µg/m³ (OEB 3)</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wipe limit 200 µg/100 cm²</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TWA</td>
<td>0.2 mg/m³ (selenium)</td>
<td>CA AB OEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TWAEV</td>
<td>0.2 mg/m³ (selenium)</td>
<td>CA QC OEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TWA</td>
<td>0.1 mg/m³</td>
<td>CA BC OEL</td>
</tr>
</tbody>
</table>
Abamectin / Levamisole Hydrochloride / Cobalt EDTA / Sodium Selenate Formulation

<table>
<thead>
<tr>
<th>TWA</th>
<th>0.2 mg/m³ (selenium)</th>
<th>ACGIH</th>
</tr>
</thead>
<tbody>
<tr>
<td>abamectin (combination of avermectin B1a and avermectin B1b) (ISO)</td>
<td>71751-41-2</td>
<td>TWA</td>
</tr>
<tr>
<td>Wipe limit</td>
<td>150 µg/100 cm²</td>
<td>Internal</td>
</tr>
</tbody>
</table>

Engineering measures: Use appropriate engineering controls and manufacturing technologies to control airborne concentrations (e.g., dripless quick connections). All engineering controls should be implemented by facility design and operated in accordance with GMP principles to protect products, workers, and the environment. Containment technologies suitable for controlling compounds are required to control at source and to prevent migration of the compound to uncontrolled areas (e.g., open-face containment devices). Minimize open handling.

Personal protective equipment

Respiratory protection: If adequate local exhaust ventilation is not available or exposure assessment demonstrates exposures outside the recommended guidelines, use respiratory protection.

Filter type: Combined particulates and organic vapor type

Hand protection: Chemical-resistant gloves

Remarks: Consider double gloving.

Eye protection: Wear safety glasses with side shields or goggles. Wear a faceshield or other full face protection if there is a potential for direct contact to the face with dusts, mists, or aerosols.

Skin and body protection: Work uniform or laboratory coat. Additional body garments should be used based upon the task being performed (e.g., sleevelets, apron, gauntlets, disposable suits) to avoid exposed skin surfaces. Use appropriate degowning techniques to remove potentially contaminated clothing.

Hygiene measures: If exposure to chemical is likely during typical use, provide eye flushing systems and safety showers close to the working place. When using do not eat, drink or smoke. Wash contaminated clothing before re-use. The effective operation of a facility should include review of engineering controls, proper personal protective equipment, appropriate degowning and decontamination procedures, industrial hygiene monitoring, medical surveillance and the use of administrative controls.
SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>suspension</td>
</tr>
<tr>
<td>Color</td>
<td>No data available</td>
</tr>
<tr>
<td>Odor</td>
<td>No data available</td>
</tr>
<tr>
<td>Odor Threshold</td>
<td>No data available</td>
</tr>
<tr>
<td>pH</td>
<td>No data available</td>
</tr>
<tr>
<td>Melting point/freezing point</td>
<td>No data available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range</td>
<td>No data available</td>
</tr>
<tr>
<td>Flash point</td>
<td>No data available</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>No data available</td>
</tr>
<tr>
<td>Flammability (solid, gas)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Flammability (liquids)</td>
<td>No data available</td>
</tr>
<tr>
<td>Upper explosion limit / Upper flammability limit</td>
<td>No data available</td>
</tr>
<tr>
<td>Lower explosion limit / Lower flammability limit</td>
<td>No data available</td>
</tr>
<tr>
<td>Vapor pressure</td>
<td>No data available</td>
</tr>
<tr>
<td>Relative vapor density</td>
<td>No data available</td>
</tr>
<tr>
<td>Relative density</td>
<td>No data available</td>
</tr>
<tr>
<td>Density</td>
<td>No data available</td>
</tr>
<tr>
<td>Solubility(ies)</td>
<td>Water solubility</td>
</tr>
<tr>
<td>Partition coefficient: n-octanol/water</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Autoignition temperature</td>
<td>No data available</td>
</tr>
<tr>
<td>Decomposition temperature</td>
<td>No data available</td>
</tr>
<tr>
<td>Viscosity</td>
<td>Viscosity, kinematic</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Not explosive</td>
</tr>
</tbody>
</table>
Oxidizing properties : The substance or mixture is not classified as oxidizing.

Molecular weight : No data available

Particle size : Not applicable

SECTION 10. STABILITY AND REACTIVITY

Reactivity : Not classified as a reactivity hazard.
Chemical stability : Stable under normal conditions.
Possibility of hazardous reactions : Can react with strong oxidizing agents.
Conditions to avoid : None known.
Incompatible materials : Oxidizing agents
Hazardous decomposition products : No hazardous decomposition products are known.

SECTION 11. TOXICOLOGICAL INFORMATION

Information on likely routes of exposure

Inhalation
Skin contact
Ingestion
Eye contact

Acute toxicity
Harmful if swallowed.

Product:

Acute oral toxicity : Acute toxicity estimate: 939.39 mg/kg
Method: Calculation method

Acute inhalation toxicity : Acute toxicity estimate: > 5 mg/l
Exposure time: 4 h
Test atmosphere: dust/mist
Method: Calculation method

Acute dermal toxicity : Acute toxicity estimate: > 2,000 mg/kg
Method: Calculation method

Components:

Levamisole hydrochloride:

Acute oral toxicity : LD50 (Rat): 180 mg/kg
LD50 (Mouse): 223 mg/kg
LD50 (Rabbit): 458 mg/kg
Abamectin / Levamisole Hydrochloride / Cobalt EDTA / Sodium Selenate Formulation

Acute inhalation toxicity: Remarks: No data available
Acute dermal toxicity: Remarks: No data available

Cobalt disodium ethylenediaminetetraacetate:
Acute oral toxicity: LD50 (Rat): > 2,000 mg/kg
Remarks: Based on data from similar materials

Benzyl alcohol:
Acute oral toxicity: LD50 (Rat): 1,620 mg/kg
Acute inhalation toxicity: LC50 (Rat): > 4.178 mg/l
Exposure time: 4 h
Test atmosphere: dust/mist
Method: OECD Test Guideline 403

Citric acid:
Acute oral toxicity: LD50 (Mouse): 5,400 mg/kg
Acute dermal toxicity: LD50 (Rat): > 2,000 mg/kg
Method: OECD Test Guideline 402
Assessment: The substance or mixture has no acute dermal toxicity

Sodium selenate:
Acute oral toxicity: LD50 (Rat): > 5 - 50 mg/kg
Remarks: Based on data from similar materials
Acute inhalation toxicity: LC50 (Rat): > 0.052 - 0.51 mg/l
Exposure time: 4 h
Test atmosphere: dust/mist
Method: OECD Test Guideline 403

abamectin (combination of avermectin B1a and avermectin B1b) (ISO):
Acute oral toxicity: LD50 (Rat): 24 mg/kg
LD50 (Mouse): 10 mg/kg
LDLo (Monkey): 24 mg/kg
Symptoms: Dilatation of the pupil
Acute inhalation toxicity: LC50 (Rat): 0.023 mg/l
Exposure time: 4 h
Test atmosphere: dust/mist
Acute dermal toxicity: LD50 (Rat): 330 mg/kg
LD50 (Rabbit): 2,000 mg/kg
Skin corrosion/irritation
Not classified based on available information.

Components:

Levamisole hydrochloride:
Remarks : No data available

Cobalt disodium ethylenediaminetetraacetate:
Species : Rabbit
Method : OECD Test Guideline 404
Result : No skin irritation
Remarks : Based on data from similar materials

Benzyl alcohol:
Species : Rabbit
Method : OECD Test Guideline 404
Result : No skin irritation

Citric acid:
Species : Rabbit
Method : OECD Test Guideline 404
Result : No skin irritation

Sodium selenate:
Species : reconstructed human epidermis (RhE)
Method : OECD Test Guideline 431

abamectin (combination of avermectin B1a and avermectin B1b) (ISO):
Species : Rabbit
Result : No skin irritation

Serious eye damage/eye irritation
Not classified based on available information.

Components:

Levamisole hydrochloride:
Remarks : No data available
Cobalt disodium ethylenediaminetetraacetate:
Species: Rabbit
Result: No eye irritation
Remarks: Based on data from similar materials

Benzyl alcohol:
Species: Rabbit
Result: Irritation to eyes, reversing within 21 days
Method: OECD Test Guideline 405

Citric acid:
Species: Rabbit
Result: Irritation to eyes, reversing within 21 days
Method: OECD Test Guideline 405

Sodium selenate:
Species: Bovine cornea
Method: OECD Test Guideline 437
Result: No eye irritation

Abamectin (combination of avermectin B1a and avermectin B1b) (ISO):
Species: Rabbit
Result: Mild eye irritation

Respiratory or skin sensitization
Skin sensitization
Not classified based on available information.
Respiratory sensitization
May cause allergy or asthma symptoms or breathing difficulties if inhaled.

Components:
Levamisole hydrochloride:
Remarks: No data available

Cobalt disodium ethylenediaminetetraacetate:
Routes of exposure: Inhalation (dust/mist/fume)
Species: Humans
Result: Positive
Remarks: Based on data from similar materials
Assessment: Probability or evidence of low to moderate respiratory sensitization rate in humans
Benzyl alcohol:
 Test Type: Maximization Test
 Routes of exposure: Skin contact
 Species: Guinea pig
 Method: OECD Test Guideline 406
 Result: negative

abamectin (combination of avermectin B1a and avermectin B1b) (ISO):
 Test Type: Maximization Test
 Routes of exposure: Skin contact
 Result: Not a skin sensitizer.

Germ cell mutagenicity
Suspected of causing genetic defects.

Components:

Levamisole hydrochloride:
 Genotoxicity in vitro:
 Test Type: Bacterial reverse mutation assay (AMES)
 Result: negative

 Test Type: Chromosome aberration test in vitro
 Result: negative

Cobalt disodium ethylenediaminetetraacetate:
 Genotoxicity in vitro:
 Test Type: Bacterial reverse mutation assay (AMES)
 Method: OECD Test Guideline 471
 Result: negative
 Remarks: Based on data from similar materials

 Test Type: In vitro mammalian cell gene mutation test
 Method: OECD Test Guideline 476
 Result: positive
 Remarks: Based on data from similar materials

 Test Type: Chromosome aberration test in vitro
 Method: OECD Test Guideline 473
 Result: positive
 Remarks: Based on data from similar materials

 Genotoxicity in vivo:
 Test Type: Micronucleus test
 Species: Mouse
 Application Route: Intraperitoneal injection
 Result: positive
 Remarks: Based on data from similar materials

 Test Type: Mutagenicity (in vivo mammalian bone-marrow cytogenetic test, chromosomal analysis)
 Species: Mouse
 Application Route: Ingestion
<table>
<thead>
<tr>
<th>Substance</th>
<th>Genotoxicity in vitro</th>
<th>Genotoxicity in vivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzyl alcohol:</td>
<td>Test Type: Bacterial reverse mutation assay (AMES)</td>
<td>Test Type: Mammalian erythrocyte micronucleus test (in vivo cytogenetic assay)</td>
</tr>
<tr>
<td></td>
<td>Result: negative</td>
<td>Species: Mouse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Application Route: Intraperitoneal injection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Result: negative</td>
</tr>
<tr>
<td>Citric acid:</td>
<td>Test Type: Bacterial reverse mutation assay (AMES)</td>
<td>Test Type: Mutagenicity (in vivo mammalian bone-marrow cytogenetic test, chromosomal analysis)</td>
</tr>
<tr>
<td></td>
<td>Result: negative</td>
<td>Species: Rat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Application Route: Ingestion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Result: negative</td>
</tr>
<tr>
<td>Sodium selenate:</td>
<td>Test Type: Bacterial reverse mutation assay (AMES)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Method: OECD Test Guideline 471</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Result: negative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remarks: Based on data from similar materials</td>
<td></td>
</tr>
<tr>
<td>abamectin (combination of avermectin B1a and avermectin B1b) (ISO):</td>
<td>Test Type: Bacterial reverse mutation assay (AMES)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Result: negative</td>
<td></td>
</tr>
</tbody>
</table>
Test Type: In vitro mammalian cell gene mutation test
Test system: Chinese hamster lung cells
Result: negative

Test Type: Alkaline elution assay
Result: negative

Genotoxicity in vivo:
Test Type: Mutagenicity (in vivo mammalian bone-marrow cytogenetic test, chromosomal analysis)
Species: Mouse
Application Route: Intraperitoneal injection
Result: negative

Carcinogenicity
Suspected of causing cancer.

Components:

Levamisole hydrochloride:
Species: Mouse
Application Route: Oral
Exposure time: 2 Years
NOAEL: 80 mg/kg body weight
Remarks: No significant adverse effects were reported

Species: Rat
Application Route: Oral
Exposure time: 2 Years
NOAEL: 40 mg/kg body weight
Remarks: No significant adverse effects were reported

Cobalt disodium ethylenediaminetetraacetate:
Species: Rat
Application Route: Inhalation (dust/mist/fume)
Exposure time: 105 weeks
Result: positive
Remarks: Based on data from similar materials

Species: Mouse
Application Route: Inhalation (dust/mist/fume)
Exposure time: 105 weeks
Result: positive
Remarks: Based on data from similar materials

Carcinogenicity - Assessment: Limited evidence of carcinogenicity in animal studies
Remarks: Based on data from similar materials

Benzyl alcohol:
Species: Mouse
Application Route: Ingestion
SAFETY DATA SHEET
according to the Hazardous Products Regulations

Abamectin / Levamisole Hydrochloride / Cobalt EDTA / Sodium Selenate Formulation

Version 1.2 Revision Date: 09/30/2023 SDS Number: 10813899-00003 Date of last issue: 04/04/2023 Date of first issue: 07/12/2022

Exposure time: 103 weeks
Method: OECD Test Guideline 451
Result: negative

abamectin (combination of avermectin B1a and avermectin B1b) (ISO):
Species: Rat
Application Route: Oral
Exposure time: 105 weeks
Result: negative
Species: Mouse
Application Route: Oral
Exposure time: 93 weeks
Result: negative

Reproductive toxicity
Suspected of damaging fertility. Suspected of damaging the unborn child.

Components:

Levamisole hydrochloride:
Effects on fertility: Test Type: Three-generation reproduction toxicity study
Species: Rat
Application Route: Oral
Result: No significant adverse effects were reported

Effects on fetal development: Test Type: Embryo-fetal development
Species: Rat
Application Route: Oral
Developmental Toxicity: NOAEL: 20 mg/kg body weight
Result: Fetotoxicity.

Test Type: Embryo-fetal development
Species: Rabbit
Application Route: Oral
Developmental Toxicity: LOAEL: 40 mg/kg body weight
Result: Fetotoxicity.

Reproductive toxicity - Assessment: Some evidence of adverse effects on development, based on animal experiments.

Cobalt disodium ethylenediaminetetraacetate:
Effects on fertility: Test Type: Fertility/early embryonic development
Species: Rat
Application Route: Ingestion
Result: positive
Remarks: Based on data from similar materials

Test Type: Fertility/early embryonic development
Species: Mouse
Application Route: Ingestion
Abamectin / Levamisole Hydrochloride / Cobalt EDTA / Sodium Selenate Formulation

<table>
<thead>
<tr>
<th>Version</th>
<th>Revision Date</th>
<th>SDS Number</th>
<th>Date of last issue: 04/04/2023</th>
<th>Date of first issue: 07/12/2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>09/30/2023</td>
<td>10813899-00003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Result: positive
Remarks: Based on data from similar materials

Test Type: Fertility/early embryonic development
Species: Mouse
Application Route: inhalation (dust/mist/fume)
Result: positive
Remarks: Based on data from similar materials

Test Type: Fertility/early embryonic development
Species: Rat
Application Route: inhalation (dust/mist/fume)
Result: positive
Remarks: Based on data from similar materials

Effects on fetal development
Test Type: Embryo-fetal development
Species: Rat
Application Route: Ingestion
Method: OECD Test Guideline 414
Result: negative
Remarks: Based on data from similar materials

Reproductive toxicity - Assessment
Some evidence of adverse effects on sexual function and fertility, based on animal experiments.
Remarks: Based on data from similar materials

Benzyl alcohol:
Effects on fertility
Test Type: Fertility/early embryonic development
Species: Rat
Application Route: Ingestion
Result: negative
Remarks: Based on data from similar materials

Effects on fetal development
Test Type: Embryo-fetal development
Species: Mouse
Application Route: Ingestion
Result: negative

Citric acid:
Effects on fetal development
Test Type: One-generation reproduction toxicity study
Species: Rat
Application Route: Ingestion
Result: negative

Sodium selenate:
Effects on fertility
Test Type: Two-generation reproduction toxicity study
Species: Rat
Application Route: Ingestion
Result: negative
Remarks: Based on data from similar materials
Effects on fetal development: Test Type: Embryo-fetal development
Species: Mouse
Application Route: Ingestion
Result: negative
Remarks: Based on data from similar materials

abamectin (combination of avermectin B1a and avermectin B1b) (ISO):
Effects on fertility: Test Type: Fertility
Species: Rat, male
Application Route: Oral
Result: Effects on fertility.

Test Type: Two-generation reproduction toxicity study
Species: Rat
Application Route: Oral
Early Embryonic Development: NOAEL: 0.12 mg/kg body weight
Result: Fetotoxicity.

Effects on fetal development: Test Type: Embryo-fetal development
Species: Mouse
Application Route: Oral
General Toxicity Maternal: NOAEL: 0.05 mg/kg body weight
Developmental Toxicity: NOAEL: 0.2 mg/kg body weight
Result: Cleft palate
Remarks: Adverse developmental effects were observed

Test Type: Embryo-fetal development
Species: Rabbit
Application Route: Oral
Developmental Toxicity: LOAEL: 2 mg/kg body weight
Result: Cleft palate, Teratogenic effects., Reduced embryonic survival
Remarks: Adverse developmental effects were observed

Test Type: Development
Species: Rat
Application Route: Oral
Developmental Toxicity: LOAEL: 1.6 mg/kg body weight
Result: Teratogenic effects.

Reproductive toxicity - Assessment: Some evidence of adverse effects on sexual function and fertility, based on animal experiments., Some evidence of adverse effects on development, based on animal experiments.

STOT-single exposure: Not classified based on available information.
Components:

Citric acid:
Assessment: May cause respiratory irritation.

STOT-repeated exposure
Causes damage to organs (Respiratory Tract, Thyroid, Heart, Blood) through prolonged or repeated exposure.
May cause damage to organs (Blood, Testis) through prolonged or repeated exposure if swallowed.

Components:

Levamisole hydrochloride:
Target Organs: Blood, Testis
Assessment: May cause damage to organs through prolonged or repeated exposure.

Cobalt disodium ethylenediaminetetraacetate:
Routes of exposure: Inhalation (dust/mist/fume)
Target Organs: Respiratory Tract
Assessment: Shown to produce significant health effects in animals at concentrations of 0.02 mg/l/6h/d or less.
Remarks: Based on data from similar materials

Routes of exposure: Ingestion
Target Organs: Thyroid, Heart, Blood
Assessment: Shown to produce significant health effects in animals at concentrations of >10 to 100 mg/kg bw.
Remarks: Based on data from similar materials

Sodium selenate:
Routes of exposure: Ingestion
Assessment: Shown to produce significant health effects in animals at concentrations of 10 mg/kg bw or less.

Abamectin (combination of avermectin B1a and avermectin B1b) (ISO):
Routes of exposure: Ingestion
Target Organs: Central nervous system
Assessment: Causes damage to organs through prolonged or repeated exposure.

Repeated dose toxicity

Components:

Levamisole hydrochloride:
Species: Rat
NOAEL: 2.5 mg/kg
Abamectin / Levamisole Hydrochloride / Cobalt EDTA / Sodium Selenate Formulation

Application Route: Oral
Exposure time: 18 Months
Target Organs: Testis

Species: Dog
LOAEL: 20 mg/kg
Application Route: Oral
Exposure time: 18 Months
Target Organs: Blood

Species: Dog
LOAEL: 40 mg/kg
Application Route: Oral
Exposure time: 3 Months

Cobalt disodium ethylenediaminetetraacetate:

Species: Rat
LOAEL: > 10 mg/kg
Application Route: Ingestion
Exposure time: 90 Days
Remarks: Based on data from similar materials

Species: Rat
LOAEL: < 0.01 mg/l
Application Route: Inhalation (dust/mist/fume)
Exposure time: 13 Weeks
Method: OECD Test Guideline 413
Remarks: Based on data from similar materials

Species: Mouse
LOAEL: < 0.01 mg/l
Application Route: Inhalation (dust/mist/fume)
Exposure time: 13 Weeks
Method: OECD Test Guideline 413
Remarks: Based on data from similar materials

Benzyl alcohol:

Species: Rat
NOAEL: 1.072 mg/l
Application Route: Inhalation (dust/mist/fume)
Exposure time: 28 Days
Method: OECD Test Guideline 412

Citric acid:

Species: Rat
NOAEL: 4,000 mg/kg
LOAEL: 8,000 mg/kg
Application Route: Ingestion
Exposure time: 10 Days
Sodium selenate:
Species: Rat
NOAEL: 0.4 mg/kg
Application Route: Ingestion
Exposure time: 13 Weeks

abamectin (combination of avermectin B1a and avermectin B1b) (ISO):
Species: Rat
NOAEL: 1.5 mg/kg
Application Route: Oral
Exposure time: 24 Months
Target Organs: Central nervous system
Symptoms: Tremors, ataxia

Species: Mouse
NOAEL: 4.0 mg/kg
Application Route: Oral
Exposure time: 24 Months
Target Organs: Central nervous system
Symptoms: Tremors, ataxia

Species: Dog
NOAEL: 0.25 mg/kg
LOAEL: 0.5 mg/kg
Application Route: Oral
Exposure time: 53 Weeks
Target Organs: Central nervous system
Symptoms: Tremors, weight loss
Remarks: mortality observed

Species: Monkey
NOAEL: 1.0 mg/kg
Application Route: Oral
Exposure time: 14 Weeks
Target Organs: Central nervous system

Aspiration toxicity
Not classified based on available information.

Experience with human exposure

Components:

Levamisole hydrochloride:
Ingestion: Symptoms: Nausea, Vomiting, Headache, Dizziness, hypotension

Cobalt disodium ethylenediaminetetraacetate:
Inhalation: Target Organs: Respiratory system
Remarks: Based on data from similar materials

Ingestion: Target Organs: Blood
Remarks: Based on data from similar materials
Abamectin / Levamisole Hydrochloride / Cobalt EDTA / Sodium Selenate Formulation

Target Organs: Heart
Target Organs: Thyroid

abamectin (combination of avermectin B1a and avermectin B1b) (ISO):

Ingestion:
Symptoms: May cause, Tremors, Diarrhea, central nervous system effects, Salivation, tearing

SECTION 12. ECOLOGICAL INFORMATION

Ecotoxicity

Components:

Levamisole hydrochloride:
Toxicity to fish:
LC50 (Oryzias latipes (Japanese medaka)): 37.3 mg/l
Exposure time: 96 h
Method: OECD Test Guideline 203

Toxicity to daphnia and other aquatic invertebrates:
EC50 (Daphnia magna (Water flea)): 64 mg/l
Exposure time: 48 h
Method: OECD Test Guideline 202

Cobalt disodium ethylenediaminetetraacetate:
Toxicity to daphnia and other aquatic invertebrates:
EC50 (Daphnia magna (Water flea)): > 100 mg/l
Exposure time: 48 h
Method: OECD Test Guideline 202
Remarks: Based on data from similar materials

Toxicity to algae/aquatic plants:
ErC50 (Raphidocelis subcapitata (freshwater green alga)): > 100 mg/l
Exposure time: 72 h
Method: OECD Test Guideline 201
Remarks: Based on data from similar materials

Toxicity to fish (Chronic toxicity):
EC10 (Danio rerio (zebra fish)): > 1 mg/l
Exposure time: 34 d
Remarks: Based on data from similar materials

Toxicity to daphnia and other aquatic invertebrates (Chronic toxicity):
EC10 (Hyalella azteca (Amphipod)): > 0.01 - 0.1 mg/l
Exposure time: 28 d
Method: OECD Test Guideline 211
Remarks: Based on data from similar materials

Benzyl alcohol:
Toxicity to fish:
LC50 (Pimephales promelas (fathead minnow)): 460 mg/l
Exposure time: 96 h

Toxicity to daphnia and other aquatic invertebrates:
EC50 (Daphnia magna (Water flea)): 230 mg/l
Exposure time: 48 h
Method: OECD Test Guideline 202
Toxicity to algae/aquatic plants

- **EC50** *(Pseudokirchneriella subcapitata (green algae)): 770 mg/l*
 - Exposure time: 72 h
 - Method: OECD Test Guideline 201

- **NOEC** *(Pseudokirchneriella subcapitata (green algae)): 310 mg/l*
 - Exposure time: 72 h
 - Method: OECD Test Guideline 201

Toxicity to daphnia and other aquatic invertebrates (Chronic toxicity)

- **NOEC** *(Daphnia magna (Water flea)): 51 mg/l*
 - Exposure time: 21 d
 - Method: OECD Test Guideline 211

Citric acid:

- **Toxicity to fish**
 - **LC50** *(Pimephales promelas (fathead minnow)): > 100 mg/l*
 - Exposure time: 96 h

- **Toxicity to daphnia and other aquatic invertebrates**
 - **EC50** *(Daphnia magna (Water flea)): 1,535 mg/l*
 - Exposure time: 24 h

Sodium selenate:

- **Toxicity to fish**
 - **LC50** *(Pimephales promelas (fathead minnow)): > 1 - 10 mg/l*
 - Exposure time: 96 h
 - Remarks: Based on data from similar materials

- **Toxicity to daphnia and other aquatic invertebrates**
 - **EC50** *(Daphnia magna (Water flea)): > 1 - 10 mg/l*
 - Exposure time: 48 h
 - Remarks: Based on data from similar materials

- **Toxicity to algae/aquatic plants**
 - **ErC50** *(Chlamydomonas reinhardtii (green algae)): 245 µg/l*
 - Exposure time: 96 h

 - **NOEC** *(Chlamydomonas reinhardtii (green algae)): 197 µg/l*
 - Exposure time: 96 h

- **Toxicity to fish (Chronic toxicity)**
 - **NOEC** *(Lepomis macrochirus (Bluegill sunfish)): > 0.01 - 0.1 mg/l*
 - Exposure time: 258 d
 - Remarks: Based on data from similar materials

- **Toxicity to daphnia and other aquatic invertebrates (Chronic toxicity)**
 - **NOEC**: > 0.1 - 1 mg/l
 - Exposure time: 28 d
 - Remarks: Based on data from similar materials

- **Toxicity to microorganisms**
 - **EC10** *(activated sludge): 590 mg/l*
 - Exposure time: 3 h
 - Method: OECD Test Guideline 209

abamectin (combination of avermectin B1a and avermectin B1b) (ISO):
SAFETY DATA SHEET
according to the Hazardous Products Regulations

Abamectin / Levamisole Hydrochloride / Cobalt EDTA / Sodium Selenate Formulation

Toxicity to fish:
- LC50 (Oncorhynchus mykiss (rainbow trout)): 3.2 µg/l
 Exposure time: 96 h
- LC50 (Lepomis macrochirus (Bluegill sunfish)): 9.6 µg/l
 Exposure time: 96 h
- LC50 (Ictalurus punctatus (channel catfish)): 24 µg/l
 Exposure time: 96 h
- LC50 (Cyprinus carpio (Carp)): 42 µg/l
 Exposure time: 96 h
- LC50 (Cyprinodon variegatus (sheepshead minnow)): 15 µg/l
 Exposure time: 96 h

Toxicity to daphnia and other aquatic invertebrates:
- EC50 (Americamysis): 0.022 µg/l
 Exposure time: 96 h
- EC50 (Daphnia magna (Water flea)): 0.34 µg/l
 Exposure time: 48 h

Toxicity to algae/aquatic plants:
- EC50 (Pseudokirchneriella subcapitata (green algae)): 100 mg/l
 Exposure time: 72 h

Toxicity to fish (Chronic toxicity):
- NOEC (Pimephales promelas (fathead minnow)): 0.52 µg/l
 Exposure time: 32 d

Toxicity to daphnia and other aquatic invertebrates (Chronic toxicity):
- NOEC (Daphnia magna (Water flea)): 0.03 µg/l
 Exposure time: 21 d
- NOEC (Mysidopsis bahia (opossum shrimp)): 0.0035 µg/l
 Exposure time: 28 d

Toxicity to microorganisms:
- EC50: > 1,000 mg/l
 Exposure time: 3 h
 Test Type: Respiration inhibition

Persistence and degradability

Components:

Benzyl alcohol:
- Biodegradability: Result: Readily biodegradable.
 Biodegradation: 92 - 96 %
 Exposure time: 14 d

Citric acid:
- Biodegradability: Result: Readily biodegradable.
 Biodegradation: 97 %
 Exposure time: 28 d
Method: OECD Test Guideline 301B

abamectin (combination of avermectin B1a and avermectin B1b) (ISO):
Stability in water : Hydrolysis: 50 %(< 12 h)

Bioaccumulative potential

Components:

Cobalt disodium ethylenediaminetetraacetate:
Partition coefficient: n-octanol/water : log Pow: -3.86
Remarks: Calculation

Benzy alcohol:
Partition coefficient: n-octanol/water : log Pow: 1.05

Citric acid:
Partition coefficient: n-octanol/water : log Pow: -1.72

abamectin (combination of avermectin B1a and avermectin B1b) (ISO):
Bioaccumulation : Bioconcentration factor (BCF): 52
Partition coefficient: n-octanol/water : log Pow: 4

Mobility in soil

Components:

abamectin (combination of avermectin B1a and avermectin B1b) (ISO):
Distribution among environmental compartments : log Koc: > 3.6

Other adverse effects
No data available

SECTION 13. DISPOSAL CONSIDERATIONS

Disposal methods
Waste from residues : Do not dispose of waste into sewer.
Dispose of in accordance with local regulations.
Contaminated packaging : Empty containers should be taken to an approved waste handling site for recycling or disposal.
If not otherwise specified: Dispose of as unused product.

SECTION 14. TRANSPORT INFORMATION

International Regulations
UNRTDG
UN number : UN 3082
Proper shipping name : ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.
(abamectin (combination of avermectin B1a and avermectin B1b) (ISO), Cobalt disodium ethylenediaminetetraacetate)
Class : 9
Packing group : III
Labels : 9
Environmentally hazardous : yes

IATA-DGR
UN/ID No. : UN 3082
Proper shipping name : Environmentally hazardous substance, liquid, n.o.s.
(abamectin (combination of avermectin B1a and avermectin B1b) (ISO), Cobalt disodium ethylenediaminetetraacetate)
Class : 9
Packing group : III
Labels : Miscellaneous
Packing instruction (cargo aircraft) : 964
Packing instruction (passenger aircraft) : 964
Environmentally hazardous : yes

IMDG-Code
UN number : UN 3082
Proper shipping name : ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.
(abamectin (combination of avermectin B1a and avermectin B1b) (ISO), Cobalt disodium ethylenediaminetetraacetate)
Class : 9
Packing group : III
Labels : 9
EmS Code : F-A, S-F
Marine pollutant : yes

Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code
Not applicable for product as supplied.

Domestic regulation

TDG
UN number : UN 3082
Proper shipping name : ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.
(abamectin (combination of avermectin B1a and avermectin B1b) (ISO), Cobalt disodium ethylenediaminetetraacetate)
Class : 9
Packing group : III
Labels : 9
ERG Code : 171
Marine pollutant : yes(abamectin (combination of avermectin B1a and avermectin B1b) (ISO), Cobalt disodium ethylenediaminetetraacetate)
Special precautions for user
The transport classification(s) provided herein are for informational purposes only, and solely based upon the properties of the unpackaged material as it is described within this Safety Data Sheet. Transportation classifications may vary by mode of transportation, package sizes, and variations in regional or country regulations.

SECTION 15. REGULATORY INFORMATION

The ingredients of this product are reported in the following inventories:
- AICS: not determined
- DSL: not determined
- IECSC: not determined

SECTION 16. OTHER INFORMATION

Full text of other abbreviations
- ACGIH: USA. ACGIH Threshold Limit Values (TLV)
- CA BC OEL: Canada. British Columbia OEL
- CA QC OEL: Quebec. Regulation respecting occupational health and safety, Schedule 1, Part 1: Permissible exposure values for airborne contaminants
- ACGIH / TWA: 8-hour, time-weighted average
- CA AB OEL / TWA: 8-hour Occupational exposure limit
- CA BC OEL / TWA: 8-hour time weighted average
- CA QC OEL / TWAEV: Time-weighted average exposure value

AICIC - Australian Inventory of Industrial Chemicals; ANTT - National Agency for Transport by Land of Brazil; ASTM - American Society for the Testing of Materials; bw - Body weight; CMR - Carcinogen, Mutagen or Reproductive Toxicant; DIN - Standard of the German Institute for Standardisation; DSL - Domestic Substances List (Canada); ECx - Concentration associated with x% response; ELx - Loading rate associated with x% response; EmS - Emergency Schedule; ENCS - Existing and New Chemical Substances (Japan); ErCx - Concentration associated with x% growth rate response; ERG - Emergency Response Guide; GHS - Globally Harmonized System; GLP - Good Laboratory Practice; IARC - International Agency for Research on Cancer; IATA - International Air Transport Association; IBC - International Code for the Construction and Equipment of Ships carrying Dangerous Chemicals in Bulk; IC50 - Half maximal inhibitory concentration; ICAO - International Civil Aviation Organization; IECSC - Inventory of Existing Chemical Substances in China; IMDG - International Maritime Dangerous Goods; IMO - International Maritime Organization; ISHL - Industrial Safety and Health Law (Japan); ISO - International Organisation for Standardization; KECI - Korea Existing Chemicals Inventory; LC50 - Lethal Concentration to 50% of a test population; LD50 - Lethal Dose to 50% of a test population (Median Lethal Dose); MARPOL - International Convention for the Prevention of Pollution from Ships; n.o.s. - Not Otherwise Specified; Nch - Chilean Norm; NO(A)EC - No Observed (Adverse) Effect Concentration; NO(A)EL - No Observed (Adverse) Effect Level; NOELR - No Observable Effect Loading Rate; NOM - Official Mexican Norm; NTP - National Toxicology Program; NZIoC - New Zealand Inventory of Chemicals; OEL - Occupational Exposure Limit; OELW - Occupational Exposure Limit, Week; OELM - Occupational Exposure Limit, Month; OEL - Occupational Exposure Limit; OSHA - Occupational Safety and Health Administration; PAH - Polycyclic Aromatic Hydrocarbons; PEL - Permissible Exposure Limit; PEL - Permissible Exposure Limit; PEL - Permissible Exposure Limit; PERL - Permissi...
Abamectin / Levamisole Hydrochloride / Cobalt EDTA / Sodium Selenate Formulation

<table>
<thead>
<tr>
<th>Version</th>
<th>Revision Date</th>
<th>SDS Number</th>
<th>Date of last issue</th>
<th>Date of first issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>09/30/2023</td>
<td>10813899-00003</td>
<td>04/04/2023</td>
<td>07/12/2022</td>
</tr>
</tbody>
</table>

Sources of key data used to compile the Material Safety Data Sheet:

Revision Date: 09/30/2023
Date format: mm/dd/yyyy

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and shall not be considered a warranty or quality specification of any type. The information provided relates only to the specific material identified at the top of this SDS and may not be valid when the SDS material is used in combination with any other materials or in any process, unless specified in the text. Material users should review the information and recommendations in the specific context of their intended manner of handling, use, processing and storage, including an assessment of the appropriateness of the SDS material in the user’s end product, if applicable.

CA / Z8