SAFETY DATA SHEET

Fluralaner (with Vitamin E) Formulation

Version: 5.4
Revision Date: 03/23/2020
SDS Number: 914889-00012
Date of last issue: 12/04/2019
Date of first issue: 10/05/2016

SECTION 1. IDENTIFICATION

Product name: Fluralaner (with Vitamin E) Formulation

Manufacturer or supplier’s details
Company name of supplier: Merck & Co., Inc
Address: 2000 Galloping Hill Road
 Kenilworth - New Jersey - U.S.A. 07033
Telephone: 908-740-4000
Telefax: 908-735-1496
Emergency telephone: 1-908-423-6000
E-mail address: EHSDATASTEWARD@merck.com

Recommended use of the chemical and restrictions on use
Recommended use: Veterinary product

SECTION 2. HAZARDS IDENTIFICATION

GHS classification in accordance with 29 CFR 1910.1200
Reproductive toxicity: Category 2

GHS label elements
Hazard pictograms:

Signal Word: Warning
Hazard Statements: H361d Suspected of damaging the unborn child.
Precautionary Statements: Prevention:
P201 Obtain special instructions before use.
P202 Do not handle until all safety precautions have been read and understood.
P280 Wear protective gloves/ protective clothing/ eye protection/ face protection.

Response:
P308 + P313 IF exposed or concerned: Get medical advice/ attention.

Storage:
P405 Store locked up.

Disposal:
P501 Dispose of contents/ container to an approved waste disposal plant.

Other hazards
None known.
SECTION 3. COMPOSITION/INFORMATION ON INGREDIENTS

Substance / Mixture: Mixture

Components

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>CAS-No.</th>
<th>Concentration (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diethylene glycol monoethyl ether</td>
<td>111-90-0</td>
<td>>= 20 - < 30</td>
</tr>
<tr>
<td>Fluralaner</td>
<td>864731-61-3</td>
<td>>= 1 - < 5</td>
</tr>
</tbody>
</table>

Actual concentration is withheld as a trade secret

SECTION 4. FIRST AID MEASURES

General advice: In the case of accident or if you feel unwell, seek medical advice immediately. When symptoms persist or in all cases of doubt seek medical advice.

If inhaled: If inhaled, remove to fresh air. Get medical attention.

In case of skin contact: In case of contact, immediately flush skin with soap and plenty of water. Remove contaminated clothing and shoes. Get medical attention. Wash clothing before reuse. Thoroughly clean shoes before reuse.

In case of eye contact: Flush eyes with water as a precaution. Get medical attention if irritation develops and persists.

If swallowed: If swallowed, DO NOT induce vomiting. Get medical attention. Rinse mouth thoroughly with water.

Most important symptoms and effects, both acute and delayed: Suspected of damaging the unborn child.

Protection of first-aiders: First Aid responders should pay attention to self-protection, and use the recommended personal protective equipment when the potential for exposure exists (see section 8).

Notes to physician: Treat symptomatically and supportively.

SECTION 5. FIRE-FIGHTING MEASURES

Suitable extinguishing media: Water spray
Alcohol-resistant foam
Carbon dioxide (CO2)
Dry chemical

Unsuitable extinguishing media: None known.

Specific hazards during firefighting: Exposure to combustion products may be a hazard to health.

Hazardous combustion products: Carbon oxides
Chlorine compounds
Fluorine compounds

Specific extinguishing methods: Use extinguishing measures that are appropriate to local circumstances and the surrounding environment.
Use water spray to cool unopened containers.
Remove undamaged containers from fire area if it is safe to do so.
Evacuate area.

SECTION 6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures
- Use personal protective equipment.
- Follow safe handling advice and personal protective equipment recommendations.

Environmental precautions
- Discharge into the environment must be avoided.
- Prevent further leakage or spillage if safe to do so.
- Prevent spreading over a wide area (e.g., by containment or oil barriers).
- Retain and dispose of contaminated wash water.
- Local authorities should be advised if significant spillages cannot be contained.

Methods and materials for containment and cleaning up
- Soak up with inert absorbent material.
- For large spills, provide diking or other appropriate containment to keep material from spreading. If diked material can be pumped, store recovered material in appropriate container.
- Clean up remaining materials from spill with suitable absorbent.
- Local or national regulations may apply to releases and disposal of this material, as well as those materials and items employed in the cleanup of releases. You will need to determine which regulations are applicable.
- Sections 13 and 15 of this SDS provide information regarding certain local or national requirements.

SECTION 7. HANDLING AND STORAGE

Technical measures
- See Engineering measures under EXPOSURE CONTROLS/PERSONAL PROTECTION section.

Local/Total ventilation
- Use only with adequate ventilation.

Advice on safe handling
- Avoid inhalation of vapor or mist.
- Do not swallow.
- Avoid contact with eyes.
- Avoid prolonged or repeated contact with skin.
- Handle in accordance with good industrial hygiene and safety practice, based on the results of the workplace exposure assessment.
- Take care to prevent spills, waste and minimize release to the environment.

Conditions for safe storage
- Keep in properly labeled containers.
- Store in accordance with the particular national regulations.

Materials to avoid
- Do not store with the following product types:
 - Strong oxidizing agents
Ingredients with workplace control parameters

<table>
<thead>
<tr>
<th>Components</th>
<th>CAS-No.</th>
<th>Value type (Form of exposure)</th>
<th>Control parameters / Permissible concentration</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diethylene glycol monoethyl ether</td>
<td>111-90-0</td>
<td>TWA</td>
<td>25 ppm</td>
<td>US WEEL</td>
</tr>
<tr>
<td>Fluralaner</td>
<td>864731-61-3</td>
<td>TWA</td>
<td>100 µg/m³ (OEB 2)</td>
<td>Internal</td>
</tr>
</tbody>
</table>

Further information: Skin

Wipe limit 1000 µg/100 cm² Internal

Engineering measures

Use appropriate engineering controls and manufacturing technologies to control airborne concentrations (e.g., dripless quick connections).

All engineering controls should be implemented by facility design and operated in accordance with GMP principles to protect products, workers, and the environment.

Laboratory operations do not require special containment.

Personal protective equipment

Respiratory protection

General and local exhaust ventilation is recommended to maintain vapor exposures below recommended limits. Where concentrations are above recommended limits or are unknown, appropriate respiratory protection should be worn.

Follow OSHA respirator regulations (29 CFR 1910.134) and use NIOSH/MSHA approved respirators. Protection provided by air purifying respirators against exposure to any hazardous chemical is limited. Use a positive pressure air supplied respirator if there is any potential for uncontrolled release, exposure levels are unknown, or any other circumstance where air purifying respirators may not provide adequate protection.

Hand protection

Material: Chemical-resistant gloves

Eye protection

Wear safety glasses with side shields or goggles.

If the work environment or activity involves dusty conditions, mists or aerosols, wear the appropriate goggles.

Wear a faceshield or other full face protection if there is a potential for direct contact to the face with dusts, mists, or aerosols.

Skin and body protection

Material: Work uniform or laboratory coat.

Hygiene measures

Adequate hand washing facilities should be provided and hand hygiene monitored.

When using do not eat, drink or smoke.

Wash contaminated clothing before re-use.

The effective operation of a facility should include review of engineering controls, proper personal protective equipment, appropriate degowning and decontamination procedures, industrial hygiene monitoring, medical surveillance and the
SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES

- **Appearance**: liquid
- **Color**: yellow
- **Odor**: No data available
- **Odor Threshold**: No data available
- **pH**: No data available
- **Melting point/freezing point**: No data available
- **Initial boiling point and boiling range**: No data available
- **Flash point**: 217 °F / 103 °C
- **Evaporation rate**: No data available
- **Flammability (solid, gas)**: Not applicable
- **Flammability (liquids)**: No data available
- **Upper explosion limit / Upper flammability limit**: No data available
- **Lower explosion limit / Lower flammability limit**: No data available
- **Vapor pressure**: No data available
- **Relative vapor density**: No data available
- **Relative density**: No data available
- **Density**: 1,045 kg/m³ (77 °F / 25 °C)
- **Solubility(ies)**
 - **Water solubility**: soluble
- **Partition coefficient: n-octanol/water**: Not applicable
- **Autoignition temperature**: No data available
- **Decomposition temperature**: No data available
- **Viscosity**
 - **Viscosity, dynamic**: 0.145 Pas (77 °F / 25 °C)
 - **Viscosity, kinematic**: 139 mm²/s (77 °F / 25 °C)
Explosive properties : Not explosive

Oxidizing properties : The substance or mixture is not classified as oxidizing.

Molecular weight : Not applicable

Particle size : Not applicable

SECTION 10. STABILITY AND REACTIVITY

Reactivity : Not classified as a reactivity hazard.

Chemical stability : Stable under normal conditions.

Possibility of hazardous reactions : Can react with strong oxidizing agents.

Conditions to avoid : None known.

Incompatible materials : Oxidizing agents

Hazardous decomposition products : No hazardous decomposition products are known.

SECTION 11. TOXICOLOGICAL INFORMATION

Information on likely routes of exposure

Inhalation
Skin contact
Ingestion
Eye contact

Acute toxicity
Not classified based on available information.

Components:

Diethylene glycol monoethyl ether:
Acute oral toxicity : LD50 (Rat): > 5,000 mg/kg

Acute inhalation toxicity : LC50 (Rat): > 5.24 mg/l
Exposure time: 4 h
Test atmosphere: dust/mist
Method: OECD Test Guideline 403

Acute dermal toxicity : LD50 (Rabbit): 9,143 mg/kg

Fluralaner:
Acute oral toxicity : LD50 (Rat): > 2,000 mg/kg
Remarks: No mortality observed at this dose.
No significant adverse effects were reported

Acute dermal toxicity : LD50 (Rat): > 2,000 mg/kg
Remarks: No significant adverse effects were reported
Skin corrosion/irritation
Not classified based on available information.

Components:

Diethylene glycol monoethyl ether:
Species: Rabbit
Result: No skin irritation

Fluralaner:
Species: Rabbit
Result: No skin irritation

Serious eye damage/eye irritation
Not classified based on available information.

Components:

Diethylene glycol monoethyl ether:
Species: Rabbit
Result: No eye irritation
Method: OECD Test Guideline 405

Fluralaner:
Species: Rabbit
Result: Mild eye irritation

Respiratory or skin sensitization

Skin sensitization
Not classified based on available information.

Respiratory sensitization
Not classified based on available information.

Components:

Fluralaner:
Test Type: Maximization Test
Routes of exposure: Dermal
Species: Guinea pig
Result: Not a skin sensitizer.

Germ cell mutagenicity
Not classified based on available information.

Components:

Diethylene glycol monoethyl ether:
Genotoxicity in vitro: Test Type: Bacterial reverse mutation assay (AMES)
Method: OECD Test Guideline 471
Result: negative
Fluralaner (with Vitamin E) Formulation

Genotoxicity in vivo:
- Test Type: Unscheduled DNA synthesis (UDS) test with mammalian liver cells in vivo
 - Species: Rat
 - Application Route: Ingestion
 - Result: negative

Fluralaner:
Genotoxicity in vitro:
- Test Type: Bacterial reverse mutation assay (AMES)
 - Result: negative
- Test Type: Mouse Lymphoma
 - Result: negative
- Test Type: Chromosomal aberration
 - Result: negative

Genotoxicity in vivo:
- Test Type: Micronucleus test
 - Species: Mouse
 - Cell type: Bone marrow
 - Application Route: Oral
 - Result: negative

Carcinogenicity
- Not classified based on available information.

Components:

Fluralaner:
- Carcinogenicity - Assessment: No data available
 - IARC: No ingredient of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.
 - OSHA: No component of this product present at levels greater than or equal to 0.1% is on OSHA’s list of regulated carcinogens.
 - NTP: No ingredient of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.

Reproductive toxicity
- Suspected of damaging the unborn child.

Components:

Diethylene glycol monoethyl ether:
- Effects on fertility:
 - Test Type: Two-generation reproduction toxicity study
 - Species: Mouse
 - Application Route: Ingestion
 - Result: negative

- Effects on fetal development:
 - Test Type: Embryo-fetal development
 - Species: Rat
 - Application Route: Ingestion
Fluralaner:

Effects on fertility:
- Test Type: Two-generation study
 - Species: Rat
 - Application Route: Oral
 - General Toxicity Parent: NOAEL: 50 mg/kg body weight
 - General Toxicity F1: LOAEL: 100 mg/kg body weight
 - Result: No effects on fertility, Postimplantation loss, Adverse neonatal effects.
 - Test Type: One-generation reproduction toxicity study
 - Species: Dog
 - Application Route: Oral
 - Fertility: NOAEL: 75 mg/kg body weight
 - Result: No effects on fertility and early embryonic development were detected.
 - Remarks: No significant adverse effects were reported

Effects on fetal development:
- Test Type: Development
 - Species: Rat
 - Application Route: Oral
 - Developmental Toxicity: NOAEL: 100 mg/kg body weight
 - Result: Embryotoxic effects and adverse effects on the offspring were detected only at high maternally toxic doses, No teratogenic effects.
 - Test Type: Development
 - Species: Rabbit
 - Application Route: Oral
 - Developmental Toxicity: NOAEL: 10 mg/kg body weight
 - Result: Skeletal malformations, Visceral malformations.
 - Remarks: Maternal toxicity observed.
 - Test Type: Development
 - Species: Rabbit
 - Application Route: Dermal
 - Developmental Toxicity: NOAEL: 100 mg/kg body weight
 - Result: Skeletal malformations.

Reproductive toxicity - Assessment:
- Suspected of damaging the unborn child.

STOT-single exposure
Not classified based on available information.

STOT-repeated exposure
Not classified based on available information.

Repeated dose toxicity

Components:

Diethylene glycol monoethyl ether:
- Species: Dog
SAFETY DATA SHEET

Fluralaner (with Vitamin E) Formulation

NOAEL : 1,000 mg/kg
Application Route : Ingestion
Exposure time : 13 Weeks

Species : Rat
NOAEL : >= 1.06 mg/l
Application Route : inhalation (dust/mist/fume)
Exposure time : 28 Days

Species : Rabbit
NOAEL : >= 1,000 mg/kg
Application Route : Skin contact
Exposure time : 28 Days

Fluralaner:
Species : Dog
NOAEL : 1 mg/kg
Application Route : Oral
Exposure time : 52 Weeks
Target Organs : Liver
Remarks : No significant adverse effects were reported

Species : Juvenile dog
LOAEL : 56 - 280 mg/kg
Application Route : Oral
Exposure time : 24 Weeks
Symptoms : Diarrhea

Species : Rat
LOAEL : 400 mg/kg
Application Route : Oral
Exposure time : 90 Days
Target Organs : Liver, thymus gland

Species : Rat
NOAEL : 500 mg/kg
Application Route : Dermal
Exposure time : 90 Days
Target Organs : Liver
Remarks : No significant adverse effects were reported

Aspiration toxicity
Not classified based on available information.

Components:
Fluralaner:
Not applicable

Experience with human exposure
Components:
Fluralaner:
SAFETY DATA SHEET

Fluralaner (with Vitamin E) Formulation

Version 5.4 Revision Date: 03/23/2020 SDS Number: 914889-00012 Date of last issue: 12/04/2019 Date of first issue: 10/05/2016

Skin contact: Remarks: May irritate skin.
Eye contact: Remarks: May cause eye irritation.

SECTION 12. ECOLOGICAL INFORMATION

Ecotoxicity

Components:

Diethylene glycol monoethyl ether:
Toxicity to fish: LC50 (Ictalurus catus (catfish)): 6,010 mg/l Exposure time: 96 h

Toxicity to daphnia and other aquatic invertebrates: EC50 (Daphnia magna (Water flea)): 1,982 mg/l Exposure time: 48 h

Toxicity to algae/aquatic plants: EC50 (Selenastrum capricornutum (green algae)): > 100 mg/l Exposure time: 96 h Method: OECD Test Guideline 201 Remarks: Based on data from similar materials NOEC (Selenastrum capricornutum (green algae)): >= 100 mg/l Exposure time: 96 h Method: OECD Test Guideline 201 Remarks: Based on data from similar materials

Toxicity to microorganisms: IC50: > 5,000 mg/l Exposure time: 16 h

Fluralaner:
Toxicity to fish: LC50 (Oncorhynchus mykiss (rainbow trout)): > 0.0488 mg/l Exposure time: 96 h Method: OECD Test Guideline 203 Remarks: No toxicity at the limit of solubility.

Toxicity to daphnia and other aquatic invertebrates: EC50 (Daphnia magna (Water flea)): > 0.015 mg/l Exposure time: 48 h Method: OECD Test Guideline 202 Remarks: No toxicity at the limit of solubility.

Toxicity to algae/aquatic plants: NOEC (Pseudokirchneriella subcapitata (green algae)): >= 0.08 mg/l Exposure time: 72 h Method: OECD Test Guideline 201 Remarks: No toxicity at the limit of solubility.

Toxicity to fish (Chronic toxicity): NOEC (Zebrafish): >= 0.049 mg/l Exposure time: 21 d Method: OECD Test Guideline 204 Remarks: No toxicity at the limit of solubility.

Toxicity to daphnia and other aquatic invertebrates (Chronic toxicity): NOEC (Daphnia magna (Water flea)): 0.000047 mg/l Exposure time: 21 d
Persistence and degradability

Components:

Diethylene glycol monoethyl ether:
Biodegradability: Result: Readily biodegradable.
Biodegradation: 100%
Exposure time: 16 d
Method: OECD Test Guideline 301B

Bioaccumulative potential

Components:

Diethylene glycol monoethyl ether:
Partition coefficient: n-octanol/water: log Pow: -0.54

Fluralaner:
Bioaccumulation: Species: Zebrafish
Bioconcentration factor (BCF): 79.4
Method: OECD Test Guideline 305

Mobility in soil

Components:

Fluralaner:
Distribution among environmental compartments: log Koc: 3.4

Other adverse effects

Components:

Fluralaner:
Results of PBT and vPvB assessment: This substance is not considered to be persistent, bioaccumulating and toxic (PBT).

SECTION 13. DISPOSAL CONSIDERATIONS

Disposal methods
Waste from residues: Dispose of in accordance with local regulations.
Contaminated packaging: Empty containers should be taken to an approved waste handling site for recycling or disposal.
If not otherwise specified: Dispose of as unused product.
SECTION 14. TRANSPORT INFORMATION

International Regulations

UNRTDG
UN number : UN 3082
Proper shipping name : ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.
 (Fluralaner)
Class : 9
Packing group : III
Labels : 9

IATA-DGR
UN/ID No. : UN 3082
Proper shipping name : Environmentally hazardous substance, liquid, n.o.s.
 (Fluralaner)
Class : 9
Packing group : III
Labels : Miscellaneous
Packing instruction (cargo aircraft) : 964
Packing instruction (passenger aircraft) : 964
Environmentally hazardous : yes

IMDG-Code
UN number : UN 3082
Proper shipping name : ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.
 (Fluralaner)
Class : 9
Packing group : III
Labels : 9
EmS Code : F-A, S-F
Marine pollutant : yes

Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code
Not applicable for product as supplied.

Domestic regulation

49 CFR
UN/ID/NA number : UN 3082
Proper shipping name : Environmentally hazardous substance, liquid, n.o.s.
 (Fluralaner)
Class : 9
Packing group : III
Labels : CLASS 9
ERG Code : 171
Marine pollutant : yes(Fluralaner)
Remarks : Above applies only to containers over 119 gallons or 450 liters., Shipment by ground under DOT is non-regulated; however it may be shipped per the applicable hazard classification to facilitate multi-modal transport involving ICAO (IATA) or IMO.
Special precautions for user
The transport classification(s) provided herein are for informational purposes only, and solely based upon the properties of the unpackaged material as it is described within this Safety Data Sheet. Transportation classifications may vary by mode of transportation, package sizes, and variations in regional or country regulations.

SECTION 15. REGULATORY INFORMATION

EPCRA - Emergency Planning and Community Right-to-Know

CERCLA Reportable Quantity
This material does not contain any components with a CERCLA RQ.

SARA 304 Extremely Hazardous Substances Reportable Quantity
This material does not contain any components with a section 304 EHS RQ.

SARA 302 Extremely Hazardous Substances Threshold Planning Quantity
This material does not contain any components with a section 302 EHS TPQ.

SARA 311/312 Hazards : Reproductive toxicity

SARA 313 : The following components are subject to reporting levels established by SARA Title III, Section 313:

Diethylene glycol monoethyl ether 111-90-0 >= 20 - < 30 %

US State Regulations

Pennsylvania Right To Know

Polyethylene glycol sorbitan monooleate 9005-65-6
Diethylene glycol monoethyl ether 111-90-0
Vitamin E 59-02-9

The ingredients of this product are reported in the following inventories:

AICS : not determined

DSL : not determined

IECSC : not determined

SECTION 16. OTHER INFORMATION

Further information
SAFETY DATA SHEET

Fluralaner (with Vitamin E) Formulation

Version 5.4 Revision Date: 03/23/2020 SDS Number: 914889-00012 Date of last issue: 12/04/2019 Date of first issue: 10/05/2016

NFPA 704:

<table>
<thead>
<tr>
<th>Health</th>
<th>Flammability</th>
<th>Instability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

HMIS® IV:

<table>
<thead>
<tr>
<th>HEALTH</th>
<th>FLAMMABILITY</th>
<th>PHYSICAL HAZARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

HMIS® ratings are based on a 0-4 rating scale, with 0 representing minimal hazards or risks, and 4 representing significant hazards or risks. The "*" represents a chronic hazard, while the "/" represents the absence of a chronic hazard.

Full text of other abbreviations

US WEEL : USA, Workplace Environmental Exposure Levels (WEEL)
US WEEL / TWA : 8-hr TWA

AICS - Australian Inventory of Chemical Substances; ASTM - American Society for the Testing of Materials; bw - Body weight; CERCLA - Comprehensive Environmental Response, Compensation, and Liability Act; CMR - Carcinogen, Mutagen or Reproductive Toxicant; DIN - Standard of the German Institute for Standardisation; DOT - Department of Transportation; DSL - Domestic Substances List (Canada); ECx - Concentration associated with x% response; EHS - Extremely Hazardous Substance; ELx - Loading rate associated with x% response; EmS - Emergency Schedule; ENCS - Existing and New Chemical Substances (Japan); ErCx - Concentration associated with x% growth rate response; ERG - Emergency Response Guide; GHS - Globally Harmonized System; GLP - Good Laboratory Practice; HMIS - Hazardous Materials Identification System; IARC - International Agency for Research on Cancer; IATA - International Air Transport Association; IBC - International Code for the Construction and Equipment of Ships carrying Dangerous Chemicals in Bulk; IC50 - Half maximal inhibitory concentration; ICAO - International Civil Aviation Organization; IECSC - Inventory of Existing Chemical Substances in China; IMDG - International Maritime Dangerous Goods; ILO - International Labour Organization; IC50 - Half maximal inhibitory concentration; IC50 - Half max...
United Nations Recommendations on the Transport of Dangerous Goods; vPvB - Very Persistent and Very Bioaccumulative

Revision Date: 03/23/2020

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and shall not be considered a warranty or quality specification of any type. The information provided relates only to the specific material identified at the top of this SDS and may not be valid when the SDS material is used in combination with any other materials or in any process, unless specified in the text. Material users should review the information and recommendations in the specific context of their intended manner of handling, use, processing and storage, including an assessment of the appropriateness of the SDS material in the user’s end product, if applicable.